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The algebraic stress model developed by Launder & Ying for the secondary flow of 
the second kind was employed with the k and e model for the prediction of fully 
developed turbulent flows in square, rectangular and trapezoidal ducts using the 
numerical procedure designed for ducts of arbitrary cross-sectional shape. Results of 
the calculation are compared extensively with available experimental data, with 
strong emphasis on the local structures of turbulence to reveal full features of this 
particular stress model. 

1. Introduction 
It has been known since the experimental work of Nikuradse (1926, 1930) that  a 

transverse mean flow exists within non-circular ducts even when the flow is fully 
developed. The secondary flow of this type, termed by Prandtl the secondary flow 
of the second kind, is attributable to the presence of Reynolds-stress gradients across 
the cross-sectional plane. Although the secondary flow of this kind usually amounts 
to a few per cent of the bulk velocity and is usually negligible if the motion is also 
induced by a cross-sectional pressure gradient, its presence displaces the lines of 
constant axial velocity (i.e. isovels) considerably toward the corners of the duct, 
yielding a relatively high velocity field there. Thus suppression of the secondary-flow 
motion in the simulation of turbulence leads to an unrealistic interpretation of the 
phenomenon. Any attempt to deal with this class of flow must pay special attention 
to the simulation of this secondary-flow motion. 

The effective-viscosity formulation cannot predict the secondary flow induced by 
the turbulent stress field since the stress and mean-strain fields under such a 
formulation are coaligned. The first successful attempt to predict the fully developed 
flow in a square duct was made by Launder & Ying (1973) with a one-equation model 
coupled to the ‘algebraic stress model’. They demonstrated that the mean velocity 
field can be predicted fairly well by their algebraic stress model. However, no 
comparison of the computation and the experiment was made on the individual 
Reynolds-stress components. Their innovative numerical work on the secondary-flow 
prediction was followed by several studies to calculate the fully developed flows in 
some other non-circular geometries ; for example those of Aly, Trupp & Gerrard (1978) 

t Present address : Department of Mechanical Engineering, Shizuoka University, Hamamatsu, 
Japan. 
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and Gosman & Rapley (1978) for an equilateral triangular duct and Carajilescov & 
Todreas (1975) for triangular rod bundles. This algebraic stress model was effective 
for prediction of the mean-flow quantities. None of these studies revealed the details 
of the model performance on the local structures of turbulence. 

Even when dealing with more complicated non-circular geometries, i t  is still 
possible to retain the Cartesian or cylindrical polar coordinate system. When using 
such systems, however, one must do extensive interpolative calculations in order to 
satisfy the required boundary conditions. Moreover, a considerable number of mesh 
points will be wasted since the points external to the flow field do not participate 
in the calculations in any meaningful manner. To overcome this problem in the 
calculations for non-circular ducts, Gosman & Rapley (1978, 1980) employed a 
curvilinear mesh system which is itself generated numerically. 

This paper describes a general numerical scheme for prediction of the fully 
developed turbulent flows in ducts of arbitrary cross-section. The method employs 
the algebraic stress model along with the two-equation ( k  and e) model; thereby their 
capability for describing the secondary flow effects can be explored. In  order to  
achieve maximum generality in practical applications, a general procedure for the 
non-orthogonal coordinate transformation was developed and implemented in the 
computational scheme. 

Calculations were performed on square, rectangular? and trapezoidal ducts and the 
results are compared with available experimental data. Discussions following the 
theoretical development arc intended to reveal the full features of this particular 
stress model with strong emphasis on the local structures of turbulence which were 
neglected in most of the previous numerical studies. Special attention is directed to 
the predicted contour maps of the quantities responsible for the secondary-flow 
generation, such as the anistropy of normal stresses and the secondary shear stress 
working on the cross-sectional plane. No other systematic discussions of the contours 
of these important turbulence quantities (through the comparison of the experiment 
and the prediction) seem to have been reported elsewhere. The discussions extend 
further to the kinetic-energy balance on the cross-sectional plane. This energy-balance 
consideration is made by comparing the contour maps of the individual terms in the 
turbulent kinetic-energy transport equation. It is hoped that the present report will 
provide information needed for further improvements of this algebraic stress model. 

The results reported here are based on a part of the doctoral thesis of the first author 
(Nakayama 1981), which presented a series of comparisons between available 
experimental data and predictions of the three-dimensional version of the present 
numerical scheme including the three-dimensional developing turbulent flow in a 
square duct and also the three-dimensional turbulent separated flow in a rectangular 
diffuser. Other details not incIuded in this paper may be found elsewhere (Nakayama 
1981 ; Nakayama, Chow & Sharma 1981). 

2. Theoretical development 
2.1. Governing equations and turbulence model 

Upon choosing the x-coordinate in the axial direction for the fully developed flows, 
the general conservation equation may be given in Ca,rtesian coordinates (x, y, z )  as 

t For the square and rectangular ducts, the coordinate transformation is not really necessary. 
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where u, v and w are the mean-velocity components in the x-, y- and z-directions 
respectively. The subscripts x, y and z denote partial derivatives. 

The general dependent variable $ stands for any one of the dependent variables 
under consideration, r is the corresponding diffusion coefficient and s6 denotes any 
source term. Equation ( 1 )  may be regarded as a general form common to all governing 
equations, namely the continuity equation, the u-, v- and w-momentum equations, 
and the scalar conservation equations such as the transport equations for the 
turbulent kinetic energy k and its rate of dissipation E .  

The diffusion coefficient r and the source term s6 in Cartesian form are listed below 
for each governing equation : 
for the continuity equation 

for the u-momentum equation 

$ = I ,  r=o,  s , , = o ;  P a )  

for the v-momentum equation 

9 (2c)  

(2  4 

(P-7yu)y I ( 7 y r ) z  . $ = v ,  r=u, s $ = -  

(11 - 7 , J z  (7yz)y . $ = w ,  r=v, 8 - -  +-, 

P P 
for the w-momentum equation 

P P 6 -  

for the equation of turbulent kinetic energy 

for the equation of the dissipation rate 

In  the above equations, p and p denote density and pressure, P i s  the production rate 
of kinetic energy, and c1 and c2 are empirical constants; vk and cr,, the effective 
Prandtl numbers of k and e, have been introduced. v is the kinematic viscosity, while 
the turbulent kinematic viscosity is denoted by ut, which is related to k and e through 
the near-wall constant cD as 

(3) 

The algebraic stress model originally developed by Launder & Ying (1973) was later 
evolved into explicit expressions for all six Reynolds-stress components by 
Gessner & Emery (1976). This explicit set is given as follows : 

vt = c D k 2 / E .  

where the empirical constants cia, c i ,  c’ and cD are algebraically related to  one 
another through two independent constants, which can be arbitrarily chosen among 
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themselves (for details see Eakayama 1981). Now the rate of production may be 
calculated as 

( 5 )  P x (7,yuy+7,,u,)/p = Vt(U;+U;) .  

The general conservation equation ( l ) ,  along with (2)-(5), gives a complete set of 
partial differential equations under consideration. As already indicated, these 
governing equations have been transformed into an arbitrary system of coordinates 
through vector analysis. A brief discussion on this transformation procedure is given 
in the appendix, where the transformed version of the general vonservation equation 
(1) may be found. 

2.2. Method of calculation 

It should be noted that the u-momentum equation may be regarded simply as another 
scalar conservation equation similar to that for k and c ,  provided that the pressure- 
gradient termp, is to be estimatcd beforehand at  each iteration. In fact, experimental 
evidence (Leutheusser 1963) indicated that the pressure variation is very small across 
the cross-sectional plane.? This fact justifies the practice of estimating p ,  through 
spatially averaging the wall shear over the cross-sectional plane, namely 

where D, is the hydraulic diameter and r,, is the mean wall shear, which is related 
to tjhe mean value of kinetic energy in the ‘near-wall’ region k,, (averaged over the 
periphery) through thc local equilibrium relationship. Thus one needs only two- 
dimensional storage in computations since the x-coordinate is now completely 
eliminated from the governing equations. 

Discretization was performed by integrating the general conservation equation 
over a grid volume in the transformed coordinates with non-uniform grid spacings. 
Following the procedure similar to  the one employed by Patankar & Spalding (1972), 
the continuity equation is reformulated as a pressure-correction equation by 
substituting an abbreviated momentum balance relationship (for details of 
discretization procedure see Nakayama 1981). 

Calculation starts with solving the v- and w-momentum equations, and subse- 
quently this estimated cross-flow velocity field is corrected by solving the pressure- 
correction equation so that  the velocity field fulfils the continuity principle. With 
p ,  estimated through (6), the u-momentum equation is solved next. Finally, the 
turbulence quantities k and e are solved. This iteration scheme also allows the 
variables to be updated sequentially. This iteration sequence is repeated until 
convergence is achieved. Convergence was measured in terms of the maximum change 
in each variable during an iteration. The maximum change allowed for the convergence 
check was lop6, when the duct width D, and the bulk velocity uB are chosen as the 
reference quantities. 

Usual wall functions based on the constant-stress layer were applied to grid nodes 
next to  the wall to match the intcrior flow with the required wall conditions. This 
practice precludes the need for fine meshes, which would otherwise be necessary to 
resolve steep gradients within the wall region. 

t This point, actually, has been substantiated through calculations of the fully developed flow 
in a square duct by allowing the pressure to vary in the three-dimensional space (see Nakayama 
1981). I t  should also be noted that, if the cross-sectional pressure gradients were considerable, the 
secondary motions would have to be governed by the pressure field (i.e. the secondary flow of the first 
kind) rather than the Reynolds-stress field (second kind). 
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Throughout the present study, a single set of empirical constants was used. These 
values are given by 

cD = 0.09, cL0 = 0.915, ck = 0.552, C’ = 0.0185, 

c1 = 1.44, c2 = 1.92, uk = 0.9, ve = 1.3, 

K = 0-41, B = 5.0, 

where K and B are the von Karman constant and the wall-law intercept respectively. 
Prior to the turbulent-flow calculations, extensive test calculations were performed 

on the various laminar-flow cases, which include the fully developed flows in square 
and triangular ducts as well as the laminar separated flow in a constricted circular 
tube. Some of these laminar-flow-calculation results were compared with the exact 
solutions, and others with the available numerical solutions. Thus the numerical 
accuracy without the presence of ambiguity due to imperfection of the turbulence 
modelling has been indirectly checked by different means. The discussions on these 
test calculations may be found elsewhere (Nakayama 1981). 

3. Fully developed flow in a square duct 
For the study of local flow structure it is expedient to start with a simple geometry. 

For this reason, the study of a square duct was conducted. Extensive discussions on 
the model performance follow, especially on the local turbulence fields in a square 
cross-section. Calculations were performed with the grid system (15 x 15) for the 
quadrant of a square at the Reynolds number (based on D, and the bulk velocity 
uB) R e  = 83000, for which extensive measurements were carried out by Leutheusser 
(1963) and later reproduced by Brundrett & Baines (1964) using the same set-up. 

3.1. Mean-velocity jield in a square duct 

Isovels (u/uB) in a square duct are shown in figure 1 (a) ,  where the predicted vclocity 
levels are in good agreement with the experimental data despite the fact that  
distortions of contours are overestimated and the velocity near to the corner is 
underestimated. The discrepancy observed here, however, is consistent with the 
underestimation of the secondary-flow magnitude along the diagonal of the square 
(directed toward the corner) and also its overestimation along the wall bisector 
(directed toward the core). This is shown in figure 2, where the referencc vclocity for 
the secondary-flow magnitude u,, is taken as the mean wall friction velocity 
u, = (~,,/p)i ,  and y is the vertical coordinate with the origin at the duet centre. 

The predicted secondary-flow velocity vectors and streamlines (normalized by D, 
and the centreline velocity uc )  are indicated in figure 1 (6, C )  along with the streamlines 
obtained experimentally by Gessner & Jones (1965) for Re = 150000 (no experimental 
streamline plots are available for Re = 83000). Even though there is experimental 
evidence (Gessner & Jones 1965) that  the secondary-flow magnitude increases for a 
lower Reynolds number, the secondary-flow rate predicted here is considerably higher 
than that of the experimental data. At the same time, the prediction shows that the 
secondary motion spreads throughout the duct, while experiment indicated that the 
motion is somewhat concentrated m a r  thc wrner. However, as noted by Gessner & 
Jones, their experimental data failed to satisfy the continuity principle with about 
20% error. 
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FIGITRE 1 Mean-velocity field, square duct (a )  Isovels, u /ug ,  RP = 83000 ----, experiment 
(Leutheusser 1963), --, present ealculation ( 6 ,  Secondary flow vectors, present calwlation, 
Re = 83000 (c) Secondary-flow streamlines, (@/vc TI,) x lo3 ITpper triangle, present ralculation, 
Re = 83000, lower triangle, experiment (Gessner & Jones l U G ) ,  Re = 150000 

FIGURE 2 .  Secondary-flow velocity magnitude, ust/u,, square duct, K r  = 83000 0, experiment 
(Brundrett 8: Baines, 1964), -. prwent calculation. (a) Wall bisector, ( b )  Comer bisector. 

3.2. Yurbulence structures in a square duct 

3.2.1 Kinetzc energy and stresses in the axial direction. The contour map of kinetic 
energy is shown in figure 3 ( a )  along with Brundrett & Baines' (1964) data (their stress 
data were normalized by +7,, - see the discussion by Melling & Whitelaw 1976). The 
predicted level of kinetic energy was found to be higher than that of the experiment. 
The contrast between the prediction and the experiment is especially evident ncar 
the corner. This is consistent with the underpredirtion of the secondary-flow velocity 
along the diagonal, since the dilution processnear the corner due to the secondary-flow 
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I / /  

FIGURE 3. Kinetic energy and normal stress 7,,, square duct Re = 83000. (a)  k /u , ;  upper triangle, 
present calculation; lower triangle, experiment (Brundrett & Baines 1964). (b) - 7 , , / ~ ~ ~  ; upper 
triangle, present calculation; lower triangle, experiment (Brundrett & Baines 1964). 

FIGURE 4. Shear stress 7,y/7,,, square duct: left half, present calculation, Re = 83000; right half, 
experiment (Melling & Whitelaw 1976), Re = 42000. 

current, which carries the fluid of low kinetic energy a t  the core toward the corner, 
becomes less efficient for a lower secondary-flow velocity. The prediction and the 
experiment, however, share the fact that distortions of kinetic energy contours are 
more pronounced than those of the isovels. 

Essentially the same comments as given above for the kinetic-energy contours may 
be made for the contour map of normal stress in the axial direction T,,, as shown 
in figure 3 ( b ) .  The shear stress opposing the primary flow rZy is shown in figure 4 along 
with the experimental data obtained a t  Re = 42000 by Melling & Whitelaw (1976) 
(contours of T , ~  and rYy are not available in the paper by Brundrett & Baines 1964). 
It should be noted that these turbulence quantities when normalized by raV become 
fairly insensitive to Reynolds numbers. Equations ( 4 b ,  c) ,  consistent with the 
effective-viscosity formulation, give the correct sign change in the shear field, and 
the predicted contours appear to be in good agreement with the experiment. 

3.2.2. Stresses in the cross-sectionalplane. The normal stress rYy in the cross-sectional 
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(a) Tyy/Tav . .  

FWIJRE 5 .  Anisotropy of normal stresses, square duct. (a )  Normal stress, ---, experiment (Melling 
& Whitelaw 1976), RP = 42000; -. presentcalculation, Re = 83000. ( h )  ( T ~ ~ - T ~ ~ ) / T ~ ~ ,  Re = 83000: 
upper triangle, present calculation ; lower triangle, experiment (Brundrett & Baines 1964). 

plane is indicated in figure 5 ( a )  along with the experimental data obtained by Melling 
& Whitelaw (1976). Owing to the geometrical symmotry of a square duct, this figure 
may also be taken as a T,, contour map when it is rotated by in. I n  other words, the 
lower half below the diagonal of the square may be interpreted as a rz2 contour map, 
which would be drawn on the other half above the diagonal. Therefore the anisotropy 
of normal stress components T , , - T ~ ~  can be observed from this figure through its 
asymmetry with respect to  the diagonal. A careful observation of the predicted 
contours reveals the anisotropy of normal stresses, but the degree of the anisotropy 
is much lower than that observed in the experiment. 

This fact can be seen directly from figure 5 ( b ) ,  where the predicted contours of 
T,, - T~~ are plotted alocg with Brundrett & Baines’ (1964) experimental data. As 
indicated in thc figure, the level of the predicted contours is one order less than that 
of the experiment. This discrepancy seems to be inherent to this particular algebraic 
stress model. This point is discussed in detail below. 

From the transformation relations, i t  can readily be shown that 

lVUl = (U;+u;)a, (8) 
where 8 is thc local angle between the tangent of the isovel and z-axis as indicated 
in figure 1 (a ) .  On the other hand, (3) and (5) under the local equilibrium condition 
lead to 

k2 
€ % P = V t  IVU12 = C D  - IVU12. 

Therefore € / I 4  = C b  IVUl. (10) 

(9) € 

Upon substituting (7) and (8) into (4d-f), one obtains the following approximate 
expressions, which are valid throughout the duct except a t  the region close to the 
duct centre : 

( 1 1 )  Tzz - 77yY = - C f  cos 28, 
Pk 
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Especially along the wall bisectors, (1  1 )  gives 

IT22 - r y y l  = c / .  
Pk 

The level of the anisotropy coefficient c’ obtained through (13) on the basis of the 
experimental data of Brundrett & Baines (1964) and Melling & Whitelaw (1976) is 
about 0.2, which is one order of magnitude higher than the value 0.0185 suggested 
by Launder & Ying (1973) and used throughout the present study (for details see 
Nakayama 1981). The fact, as indicated by Launder (1976), is that the model was 
designed and tuned on the basis of the simple yet accurate prediction of mean-flow 
quantities at the expense of the loss of accuracy in some of the turbulence structures, 
namely the quantities directly associated with c‘ .  The paradox here is that a larger 
c’ leads to a higher and more realistic degree of anisotropy of normal stresses, but 
a t  the same time leads to the amplification of secondary-flow motion and consequently 
to far more overdistorted isovels. 

The curvature change of the predicted contours observed in the middle of the upper 
triangular section as shown in figure 5(b )  is more significant than that of the 
experiment. A curvature change of this kind will be found in all the predicted 7,, -ryy 
contours of a non-circular duct, and again seems to be inherent to the model in which 
the Reynolds-stress field is directly related to the mean-strain field in a manner 
described by (1  1)  and (12). This fact may be appreciated through re-examination of 
the figure in conjunction with the isovels in figure 1 (a ) .  

As indicated in (1  l ) ,  the relative magnitude of the anisotropy along a particular 
isovel is essentially determined by the local angle through -cos 28, since a nearly 
uniform wall shear stress (kinetic energy) layer exists along the wall except in the 
proximity of the corner as a result of secondary flow motion. When the predicted 
isovel nearest to the upper wall in figure 1 ( a )  is traced counterclockwise from a point 
on the diagonal to that on the wall bisector, -cos 28 may be found along the isovel 
to vary according to 

( - c o s ( - ~ ~ )  = o ~ - r ~ - ~ ~ ~ o = - i ~ - t ~ - c o s 2 ~ i ~ - i + 2 ~ ~ ~ - r ~ - ~ o ~ o  = - I ) ,  

where Bi is the angle a t  the inflexion point of the isovel. The dip resulting from 28; 
reflected on the contour map of the anisotropy can be appreciated from the fact that 
the bulge on an anisotropy contour takes place around the inflexion point on the isovel, 
as can be seen when figure 5 (b )  is superimposed upon figure 1 (a ) .  

The predicted ryz field is indicated along with the experimental value in figure 6, 
where the consistent difference in the order of magnitude can be seen. Moreover, the 
shear stress of opposite sign, although relatively small in magnitude, appears within 
a triangular sector. This may also be explained in the same way as presented 
previously for the anisotropy contours. According to (12), the shear stress ryz is 
essentially governed by -sin 28, which varies along the isovel in the counterclockwise 
direction as 

(-sin (-in) = 1 )  + (-sin0 = 0) -t (-sin28, z -28,) + (-sin0 = 0.) 

Therefore the region of opposite shear stress is to be centred around the inflexion point 
of the isovel. It is not clear whether such a region really exists or whether its existence 
is a result of the imperfection of the turbulence model. The only available experimental 
results on 7yz contours (Brundrett & Baines 1964), however, do not indicate the 
existence of such a region within a lower triangular sector as shown in figure 6. 
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FIQURE 6. Shear stress rVz/7,,, square duct, Re = 83000: upper triangle, present calculation; 
lower triangle, experiment (Brundrett & Baines 1964). 

3.3. StressJield and isovels in a square duct 

The discussion in $3.2 has been directed to the turbulence quantities r, ,-ryy and 
ryz (no previous studies seem to have investigated the model performance in terms 
of the contour maps of and ryz ) .  The cross-sectional gradients of these 
quantities are primarily responsible for the secondary-flow generation, as may be 
observed in the vorticity-transport equation. Even though the mean-velocity field 
is predicted well by the algebraic stress model, the model fails to give a satisfactory 
agreement between prediction and experiment for these turbulence quantities asso- 
ciated with the secondary-flow generation. 

It is not an easy task to analyse the behaviour of the stress model and eventually 
to improve it, since the model is based on many proposals and assumptions. Launder 
(1976) suggested a possible modification for the expression of the pressurestrain 
relationship (i.e. the redistribution term) to describe the turbulence structure in the 
proximity of the duct corner which possibly governs the secondary-flow generation 
mechanism. 

On the other hand, as observed in the present study from the observation of the 
turbulence field in connection with the isovels, some defects in the present stress 
model seem to stem directly from the assumption originally implied by Prandtl 
(1926), namely ‘the principal planes of the stress field are normal and tangent to 
the isovel, and the velocity fluctuations tangential to the isovel (which are greater 
than the normal velocity fluctuations) cause a transverse mean flow directed from 
the concave towards the convex side of the isovel’. Equations (11) and (12) may 
be regarded as a quantitiative representation of the assumption stated above (note 
that T , , , ~ - T ~ ~ ~ ~  = -c’pk and rY,,, = 0 in the natural coordinates along the isovel and 
its normal). 

This assumption on the principal planes of the stress field is valid near the planes 
of symmetry. However, i t  becomes progressively worse away from the planes of 
symmetry where the major part of the secondary-flow vorticity production takes 
place. Such evidence may be found in the experimental data obtained by Gessner & 
Jones (1965) and Perkins (1970). Both sets of experimental data on the Reynolds 
stresses clearly indicate that the principal planes of the stress field do not lie 
perpendicular to the isovels inside a triangular sector of the rectangular cross-section. 
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FIGURE 7 .  Kinetic-energy budget, square duct, present calculation, Re = 83000: (a) gain rate of 
convection [ - ~ , , ( a k / a s , ) / ( u 3 , / o ~ ) ]  x lo3; ( b )  gain rate ofdiffusion [V.  ( rVk) / (u3 , /Dh)]  x lo3; ( c )  gain 
rate of production [P/(u%/D,)] x lo3; ( d )  gain rate of dissipation [ - - E / ( u ~ B / D ~ ) ]  x lo3. 

In  order to account for such experimental evidence in the turbulence modelling, 
a certain effort should be made by way of relaxing the strong requirements imposed 
on the principal planes of the stress field in conjunction with the isovels. Effort of 
this kind may eliminate somewhat the unrealistic curvature change observed in 
r,, - rYY contours and the sign change observed in rYZ contours, and may eventually 
lead to an improved version of the stress-anti-strain relationship. 

3.4. Transport of kinetic energy in a square duct 

It is of great interest to investigate the details of the kinetic-energy transport process 
by means of numerical calculation since such details would not be readily available 
from experiments. 

The predicted energy rates plotted in figure 7 are accompanied by signs to indicate 
energy gain and satisfy 

[ -n .~k1+1v.(rvlc) l+ [PI + [-el = o ,  (14) 
convection diffusion production dissipation 

where ti is the mean-velocity vector. 
Observation of the figure reveals the similarity in map patterns between convection 

and diffusion as well as the similarity between production and dissipation. The figure 
also indicates that ,  even away from the wall, the variation of the level of production 
rate is very similar to that of the dissipation rate. It is obvious from the energy-balance 
principle that the convection rate must balance with the diffusion rate if the 
production and the dissipation rates are balanced. Therefore the similarity observed 
between the convection and diffusion contours may be interpreted as a direct 
consequence of nearly local equilibrium between the production and the dissipation 
prevailing throughout the duct (except a t  the core region, where the production 
obviously vanishes). 

The rates of convection and diffusion arc found to be one order of magnitude less 
than those of production and dissipation. This fact can best be explained by 
estimating the convection and production terms with the natural coordinates along 
a secondary-flow streamline. Under this condition, the convection term can be 
rewritten as 
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whcrc thc swondary-flow magnitude us, is always positive when ‘yt is so chosen. This 
particuiar form tiireotiy reprcwnts the main feature of rhe convective process, namely 
that it works against the kinetic-energy gradient in such a way that the kinetic-energy 
distribution becomes more uniform along the particular streamline. 

By virtue of this natural coordinate system, the rate of production along 
streamlines near the bisectors may also he estimatcd as 

The relative magnitude of these two tcrms may now be estimated with the aid of 
Townsend’s approximation of r,,+/p z c g  k as 

The preceding observation already gives a clear overall picture of the encrgy 
balanw, and the following rough estimation may be niadc for the region other than 
the core and wrncr:  

gain rate due to convection N -gain rate due to diffusion, 

gain rate due to production N -gain rate due to dissipation, 

gain ratc due to convection or diEusion 
gain rate due to  production or dissipation 

z &. 

These energy-budget contours may also be appreciated in conjunction with the 
predicted kinctic.-cncrgy contours already shown in figure 3 (a) .  According to (15) it 
is obvious from this cwntour map that the gain rate due to convection must be 
negative as the fluid movcs upward along the diagonal from the core, and becomes 
positive near the corner as dklas,  changes sign from positive to negative. Along the 
wall hiswtor, on the other hand, the gain rate due to convec%ion must be positive 
all thc way since dlclds, along the streamline is always negative. 

The gain-loss relation of the diflusion term is essentially determined by the local 
cwrvature of the kinetic-energy (sontours since V . (TVlc) - TV2k .  Observation of the 
predicted kinetic-energy contours along the diagonal reveals the positive curvature 
changing into a negative onc near the corner. Similar observation along the wall 
bisc.ctor from the wall to the core also reveals the changc of curvature, which is 
initially negative and gradually increases to a positive value near thc core 

4. Fully developed flow in a rectangular duct 
Calculations were performed with the grid system of 14 x 24 for a quadrant of the 

rt.c4angular duct of aspect ratio 1 : 3, for which experimrntal data of Re = 56000 by 
Leuthcusser (1963) and l& = 30000 by Hoagland (1960) were available. 

4.1. 1Clmn-vdocity Jield in a rectangular duct 

Isovels normalized by the centreline velocity u, are shown for Re = 56000 in figure 
8 ( a ) ,  where Lentheusser’s experimental data and another prediction with the grid 
of 12 x 22 reported by Gosman & Rapley (1980) are also plotted. Both predictions 
show good agreement with the expcriment near the vertical wall bisector, yet 
overestimate the distortions of isovels toward the corner. Between these two 
predictions, thc velocity-level variations are in fairly good accord except near the 
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FICWKE 8. Mean-velocity field, rectangular duct  (1 :3), Re = 56000. ( a )  Isovels, u/u,: ---, 
experiment (Leutheusser 1963) ; - .-, calculation (Gosman & Rapley 1980) ; -, present calculation. 
( b )  Secondary-flow velocity vectors : upper half, present calculation ; lower half, calculation (Gosman 
& Rapley 1980). 

core. The discrepancy in the velocity levels between two predictions observed near 
the core should not be taken too seriously since the sensitivity of the isovel location 
to the velocaity magnitude becomes very high as the velocity profile flattens near the 
core. Closer observation of the predicted contour pattern of Gosman & Rapley with 
reference to that of the present calculation, however, reveals that the bulge of their 
contour is directed not toward the corner but somewhat upward toward the wall. 

This difference in isovcl patterns between the predictions reflects significantly on 
the secondary-flow patterns as shown in figure 8 (b) .  Secondary-flow velocity vectors 
of Gosman & Rapley indicated in the lower half ofthe duct seem to direct vertically 
toward the lower wall before turning to the corner region, while the vectors of the 
present calculation direct almost diagonally toward the corner as indicated in the 
other half of the duct. (Some nodes near the sidewall were systematically selected 
and excluded for a more clear presentation.) 

The secondary-flow streamline pattern obtained experimentally by Hoagland 
(1960), which happens to be the only available information for details of the 
streamlines in the rectangular duct at this time, is shown in the lower half of figure 
9 along with the present calculation in the other half. I t  presents a trend more 
favourable to  the present velocity-vector distribution rather than that of Gosman 
& Rapley. The difference in the secondary-flow patterns observed between the two 
predictions may have been brought out by the different choices of empirical constants 
and grid systems although both predictions employed essentially the same turbulence 
models. The most critical empirical constant c', for example, was tuned to be 0.013 
in their calculation. This value is about 30 yo lower than that employed in the present 
calculation. Consequently, as observed in figure 8 ( b ) ,  the secaondary-flow magnitude 
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FIQURE 9. Secondary-flow streamlines [@/(uBDh)] x lo3, rectangular duct ( 1  : 3):  upper half, present 
calculation, Re = 56000; lower half, experiment (Hoagland 1960), Re = 30000, 
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FIQIJRE 10. Anisotropy of normal stresses (T** - T ~ ~ ) / T , , ;  rectangular duct ( 1  : 3) : upper half, 
calculation, Re = 56000; lower half, experiment (Hoagland 1960), Re = 30000. 

present 

of the present calculation was found to  be larger than that of Gosman & Rapley. In  
addition, the present calculation has 72 nodes more than the grid used by Gosman 
& Rapley, and they are highly concentrated toward the sidewall in order to resolve 
the adjacent vortex. 

4.2. Anisotropy of normal stresses in a rectangular duct 
The anisotropy of normal stresses is indicated in figure 10 along with the experimental 
data of Hoagland (1960). The predicted pattern shows similar contours with the 
experimental data although the level is again underpredicted to one order of 
magnitude less than that of the experiment. Bulges on the predicted contour lines 
in the upper trapezoidal sector may also be found near the locations of the inflexion 
points along the isovels already shown in figure 8 (a ) .  
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FIQTJRE 11, Wall-shear distribution 7/raV; rectangular duct ( 1  : 3) : Re = 56000 : ---, experiment 
(Leutheusser 1963) ; -, present calculation. 

4.3. Wall-shear distribution in a rectangular duct 

The predicted wall-shear distribution normalized by its average value over the 
periphery is shown in figure 11 along with the experimental data of Leutheusser 
(1963). Along the upper wall the prediction underestimates the wall shear near the 
wall bisector and overestimates it near the corner. The relative difference between 
the upper and sidewall shears, however, is in fairly good accord with that of the 
experiment. 

5. Fully developed flow in a trapezoidal duct 
An attempt was also made to calculate the fully developed turbulent flow in a 

trapezoidal duct for which no predictions were reported. A non-orthogonal coordinate 
system with a 14 x 27 grid was employed for one-half the trapezoidal duct with corner 
angles of 75' and 105O Re = 240000. Results of calculations were compared with the 
experimental data by Rodet (1960). 

5.1. Mean-velocity jield in a trapezoidal duct 

The predicted isovels are plotted along with the experimental data in figure 12(a). 
The prediction shows good agreement with the experiment except a t  the region near 
the corner with an acute angle where the prediction underestimates the velocity level. 

The predicted secondary-flow vectors are shown in figure 12 (b) .  The figure indicates 
a big vortex surrounded by three smaller vortices. The vortex size may be estimated 
from the isovel pattern in figure 12(a)  according to Prandtl's (1926) suggestion, 
namely the secondary flow away from the core is directed toward the corner through 
the region of convex isovels, and then returns to the core through the region of 
concave isovels. Both experimental and predicted isovels in figure 12 (a) indicate a 
secondary-flow pattern similar to the one actually observed in figure 12 (b). 
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FIGURE 12. Mean-velocity field and anisotropy of normal stresses, trapezoidal duct (corner angles 
7 5 O  and 1 0 5 O ) ,  Re = 240000. (a) hovels u/uB: --- , experiment (Rodet 1960); -, present 
calculation. (6) Secondary-flow velocity vectors, present calculation. (c) (7zz - 71/1/)/7,, : upper half, 
present calculation ; lower half, experiment (Rodet 1960). 

5.2. Anisotropy of normal stresses in a trapezoidal duct 

The anisotropy of normal stresses is shown along with the experimental data in figure 
12 (c). Similar comments already given for square and rectangular ducts may be made 
for this figure. The distortion of contour lines near the upper wall appears only a t  
the middle of the contour line. 

5.3. Wall-shear distribution in a trapezoidal duct 

The wall-shear distribution is indicated in figure 13. The damping effect of the duct 
corner on the wall-shear distribution becomes more effective for the corner with an  
acute angle. This may be explained by the fact that  interferences of the walls to the 
normal stresses are naturally more significant for the walls intersecting at a smaller 
angle. 

6. Friction coefficients of non-circular ducts 
The predicted friction coefficients C, = 2r,,/pu& of the square, rectangular and 

trapezoidal ducts are plotted together in figure 14. The square-duct prediction by 
Launder & Ying (1973) based on a one-equation model, and their results obtained 
by suppressing the secondary-flow motion, are also shown along with experimental 
data obtained by various workers (Leutheusser 1963; Launder & Ying 1972; 
Hartnett, Koh & McDomas 1962). The present prediction gives better agreement with 
most of the experimental data. Clearly, suppression of the secondary-flow motion 
leads to gross errors from underestimating the friction coefficient. 
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FIGURE 13. Wall-shear distribution T/T,,, trapezoidal duct (corner angles 75' 
and 105'): present calculation, Re = 240000. 
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FIGURE 14. Friction coefficients C, in non-circular ducts: 0, experiment (Leutheusser 1963); 0, 
experiment (Launder & Ying 1972); 0, experiment (Harnett et al. (1962); ---, calculation without 
secondary flow (Launder & Ying 1973); -.-, calculation with secondary flow (Launder & Ying 
1973) ; -@-, present calculation (sq, square ; rec, rectangle ; trap, trapezoid). 

7. Conclusions 
The algebraic stress model, when coupled with the k and c model, leads to 

reasonably satisfactory predictions on the mean-velocity fields in non-circular ducts. 
The model performance on the Reynolds stress fields, however, is by no means 
satisfactory when compared with the experimental data. The anisotropy of normal 
stresses and the secondary shear stress acting in the cross-sectional plane, the 
gradients ofwhich are major causes of the secondary-flow motions, are underestimated 
to one order of magnitude less than the experimental data. 
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The level of friction coefficients of non-circular ducts predicted by the algebraic 
stress model is higher than that obtained without secondary-flow effects and appears 
to be in good agreement with the experimental data. 

This work was partially supported by the U.S. Army Research Office through 
Research Grant no. DAAG 29-79-C-0184. 

Appendix. Coordinate transformation 
The transformation for the fully developed flows may be given in the general form 

(A 1 ,  A 2 ,  A 3) of 

From the above equations, the general conservation equation ( 1 )  may be transformed 
into an arbitrary system of coordinates ( E ,  q,<) as 

x = 4-> Y = Y(7, <)> z = 4 7 , C ) .  

[J(d,- u ) ~ - J T ~ ~ ~ , I , + [ J ( ~ , . u ) ~ - - , ~ ~ ~ ~ ~ I ~ =  ~ $ 9  (A 4) 

where u = ui+vj+wk, (A 5 )  

S t  = Js, + [Jud, . d3) 4s1, + [JT(d* . d3) 4,151 (A 6) 

d, = i ,  d, = ( z s  j -ysk) J, d, = ( -z7 j + y7k) J-l ,  (A 7 ,  A 8) 

J =  (d1.d,xd3)-l = Y , x ~ - I J ~ z ~ .  (A 9) 

Here i, j and k are unit vectors in the x-, y- and z-directions respectively. The 
subscripts 6, 7 and 5 as usual denote partial derivatives. J is the Jacobian of the 
transformation. 

It should be noted that u is to take u, u and w (in the Cartesian frame) as 
components even in the new coordinate system ([,7, 5). Naturally, each of these 
velocity components remains as the dependent variable $ in the corresponding 
momentum equation (thus the terms corresponding to the Christoffel symbols in a 
general tensor notation do not appear in the present momentum equations). 

The general finite-difference form obtained through the discretization of the general 
conservation equation (A 4), is so universal that  i t  can be used for any coordinates 
simply by specifying d, and d, or equivalently y(q,<) and z ( y , < ) .  For the present 
study, the following transformation was found to be adequate: 

y =  y b + ( & - q ) q j  z = < ,  (A 10, A 1 1 )  

where Yb and & represent respectively the lower- and upper-wall geometries, are 
functions of < alone. Consequently 7 varies from zero to unity. 
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